Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Hypertension ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38690668

BACKGROUND: Chronic hypertension is known to be a major contributor to cognitive decline, with executive function and working memory being among the domains most commonly affected. Despite the growing literature on such dysfunction in patients with hypertension, the underlying neural processes are poorly understood. METHODS: In this cross-sectional study, we examine these neural processes by having participants with controlled hypertension, uncontrolled hypertension, and healthy controls perform a verbal working memory task during magnetoencephalography. Neural oscillations associated with the encoding and maintenance components of the working memory task were imaged and statistically evaluated among the 3 groups. RESULTS: Differences related to hypertension emerged during the encoding phase, where the hypertension groups exhibited weaker α-ß oscillatory responses compared with controls in the left parietal cortices, whereas such oscillatory activity differed between the 2 hypertension groups in the right prefrontal regions. Importantly, these neural responses in the prefrontal and parietal cortices during encoding were also significantly associated with behavioral performance across all participants. CONCLUSIONS: Overall, our data suggest that hypertension is associated with neurophysiological abnormalities during working memory encoding, whereas the neural processes serving maintenance seem to be preserved. The right hemispheric neural responses likely reflected compensatory processing, which patients with controlled hypertension may use to achieve verbal working memory function at the level of controls, as opposed to the uncontrolled hypertension group where diminished resources may have limited such additional recruitment.

2.
Dev Cogn Neurosci ; 66: 101371, 2024 Apr.
Article En | MEDLINE | ID: mdl-38582064

Throughout childhood and adolescence, the brain undergoes significant structural and functional changes that contribute to the maturation of multiple cognitive domains, including selective attention. Selective attention is crucial for healthy executive functioning and while key brain regions serving selective attention have been identified, their age-related changes in neural oscillatory dynamics and connectivity remain largely unknown. We examined the developmental sensitivity of selective attention circuitry in 91 typically developing youth aged 6 - 13 years old. Participants completed a number-based Simon task while undergoing magnetoencephalography (MEG) and the resulting data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and task-related peak voxels in the occipital, parietal, and cerebellar cortices were used as seeds for subsequent whole-brain connectivity analyses in the alpha and gamma range. Our key findings revealed developmentally sensitive connectivity profiles in multiple regions crucial for selective attention, including the temporoparietal junction (alpha) and prefrontal cortex (gamma). Overall, these findings suggest that brain regions serving selective attention are highly sensitive to developmental changes during the pubertal transition period.

3.
Neuroimage ; 292: 120606, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38604538

Radon is a naturally occurring gas that contributes significantly to radiation in the environment and is the second leading cause of lung cancer globally. Previous studies have shown that other environmental toxins have deleterious effects on brain development, though radon has not been studied as thoroughly in this context. This study examined the impact of home radon exposure on the neural oscillatory activity serving attention reorientation in youths. Fifty-six participants (ages 6-14 years) completed a classic Posner cuing task during magnetoencephalography (MEG), and home radon levels were measured for each participant. Time-frequency spectrograms indicated stronger theta (3-7 Hz, 300-800 ms), alpha (9-13 Hz, 400-900 ms), and beta responses (14-24 Hz, 400-900 ms) during the task relative to baseline. Source reconstruction of each significant oscillatory response was performed, and validity maps were computed by subtracting the task conditions (invalidly cued - validly cued). These validity maps were examined for associations with radon exposure, age, and their interaction in a linear regression design. Children with greater radon exposure showed aberrant oscillatory activity across distributed regions critical for attentional processing and attention reorientation (e.g., dorsolateral prefrontal cortex, and anterior cingulate cortex). Generally, youths with greater radon exposure exhibited a reverse neural validity effect in almost all regions and showed greater overall power relative to peers with lesser radon exposure. We also detected an interactive effect between radon exposure and age where youths with greater radon exposure exhibited divergent developmental trajectories in neural substrates implicated in attentional processing (e.g., bilateral prefrontal cortices, superior temporal gyri, and inferior parietal lobules). These data suggest aberrant, but potentially compensatory neural processing as a function of increasing home radon exposure in areas critical for attention and higher order cognition.


Attention , Magnetoencephalography , Radon , Humans , Adolescent , Child , Male , Female , Radon/toxicity , Radon/adverse effects , Attention/radiation effects , Attention/physiology , Environmental Exposure/adverse effects , Brain/radiation effects , Brain Waves/radiation effects , Brain Waves/physiology , Brain Waves/drug effects , Orientation/physiology
4.
J Physiol ; 602(8): 1775-1790, 2024 Apr.
Article En | MEDLINE | ID: mdl-38516712

Hypertension-related changes in brain function place individuals at higher risk for cognitive impairment and Alzheimer's disease. The existing functional neuroimaging literature has identified important neural and behavioural differences between normotensive and hypertensive individuals. However, previously-used methods (i.e. magnetic resonance imaging, functional near-infrared spectroscopy) rely on neurovascular coupling, which is a useful but indirect measure of neuronal activity. Furthermore, most studies fail to distinguish between controlled and uncontrolled hypertensive individuals, who exhibit significant behavioural and clinical differences. To partially remedy this gap in the literature, we used magnetoencephalography (MEG) to directly examine neuronal activity that is invariant to neurovascular coupling changes induced by hypertension. Our study included 52 participants (19 healthy controls, 15 controlled hypertensives, 18 uncontrolled hypertensives) who completed a modified flanker attention task during MEG. We identified significant oscillatory neural responses in two frequencies (alpha: 8-14 Hz, gamma: 48-60 Hz) for imaging and used grand-averaged images to determine seeds for whole-brain connectivity analysis. We then conducted Fisher-z tests for each pair of groups, using the relationship between the neural connectivity and behavioural attention effects. This highlighted a distributed network of regions associated with cognitive control and selective attention, including frontal-occipital and interhemispheric occipital connections. Importantly, the inferior frontal cortex exhibited a unique neurobehavioural relationship that distinguished the uncontrolled hypertensive group from the controlled hypertensive and normotensive groups. This is the first investigation of hypertension using MEG and identifies critical whole-brain connectivity differences based on hypertension profiles. KEY POINTS: Structural and functional changes in brain circuitry scale with hypertension severity and increase the risk of cognitive impairment and Alzheimer's disease. We harness the excellent spatiotemporal precision of magnetoencephalography (MEG) to directly quantify dynamic functional connectivity in healthy control, controlled hypertensive and uncontrolled hypertensive groups during a flanker task. In the first MEG study of hypertension, we show that there are neurobehavioural relationships that distinguish the uncontrolled hypertensive group from healthy and controlled hypertensive group in the prefrontal cortex. These results provide novel insights into the differential impact of hypertension on brain dynamics underlying selective attention.


Alzheimer Disease , Hypertension , Humans , Brain/diagnostic imaging , Brain/physiology , Magnetoencephalography , Magnetic Resonance Imaging , Brain Mapping , Attention , Hypertension/diagnostic imaging
5.
Front Psychol ; 15: 1330469, 2024.
Article En | MEDLINE | ID: mdl-38469220

Introduction: It is well-established that chronic exposure to environmental toxins can have adverse effects on neuropsychological health, particularly in developing youths. However, home radon, a ubiquitous radiotoxin, has been seldom studied in this context. In the present study, we investigated the degree to which chronic everyday home radon exposure was associated with alterations in transdiagnostic mental health outcomes. Methods: A total of 59 children and adolescents ages 6- to 14-years-old (M = 10.47 years, SD = 2.58; 28 males) completed the study. Parents completed questionnaires detailing aspects of attention and executive function. We used a principal components analysis to derive three domains of neuropsychological functioning: 1) task-based executive function skills, 2) self-and emotion-regulation abilities, and 3) inhibitory control. Additionally, parents completed a home radon test kit and provided information on how long their child had lived in the tested home. We computed a radon exposure index per person based on the duration of time that the child had lived in the home and their measured home radon concentration. Youths were divided into terciles based on their radon exposure index score. Using a MANCOVA design, we determined whether there were differences in neuropsychological domain scores across the three groups, controlling for age, sex, and socioeconomic status. Results: There was a significant multivariate effect of radon group on neuropsychological dysfunction (λ = 0.77, F = 2.32, p = 0.038, ηp2 = 0.12). Examination of univariate effects revealed specific increases in self-and emotion-regulation dysfunction among the youths with the greatest degree of chronic home radon exposure (F = 7.21, p = 0.002, ηp2 = 0.21). There were no significant differences by group in the other tested domains. Discussion: The data suggest potential specificity in the neurotoxic effects of everyday home radon exposure in developing youths, with significant aberrations in self-and emotion-regulation faculties. These findings support the need for better public awareness and public health policy surrounding home radon safety and mitigation strategies.

6.
Hum Brain Mapp ; 45(3): e26591, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38401133

Fluid intelligence (Gf) involves logical reasoning and novel problem-solving abilities. Often, abstract reasoning tasks like Raven's progressive matrices are used to assess Gf. Prior work has shown an age-related decline in fluid intelligence capabilities, and although many studies have sought to identify the underlying mechanisms, our understanding of the critical brain regions and dynamics remains largely incomplete. In this study, we utilized magnetoencephalography (MEG) to investigate 78 individuals, ages 20-65 years, as they completed an abstract reasoning task. MEG data was co-registered with structural MRI data, transformed into the time-frequency domain, and the resulting neural oscillations were imaged using a beamformer. We found worsening behavioral performance with age, including prolonged reaction times and reduced accuracy. MEG analyses indicated robust oscillations in the theta, alpha/beta, and gamma range during the task. Whole brain correlation analyses with age revealed relationships in the theta and alpha/beta frequency bands, such that theta oscillations became stronger with increasing age in a right prefrontal region and alpha/beta oscillations became stronger with increasing age in parietal and right motor cortices. Follow-up connectivity analyses revealed increasing parieto-frontal connectivity with increasing age in the alpha/beta frequency range. Importantly, our findings are consistent with the parieto-frontal integration theory of intelligence (P-FIT). These results further suggest that as people age, there may be alterations in neural responses that are spectrally specific, such that older people exhibit stronger alpha/beta oscillations across the parieto-frontal network during abstract reasoning tasks.


Healthy Aging , Humans , Aged , Brain/diagnostic imaging , Brain/physiology , Magnetoencephalography/methods , Magnetic Resonance Imaging , Brain Mapping/methods , Intelligence/physiology
7.
Geroscience ; 46(3): 3021-3034, 2024 Jun.
Article En | MEDLINE | ID: mdl-38175521

Age-related changes in the neurophysiology underlying motor control are well documented, but whether these changes are specific to motor function or more broadly reflect age-related alterations in fronto-parietal circuitry serving attention and other higher-level processes remains unknown. Herein, we collected high-density magnetoencephalography (MEG) in 72 healthy adults (age 28-63 years) as they completed an adapted version of the multi-source interference task that involved two subtypes of cognitive interference (i.e., flanker and Simon) and their integration (i.e., multi-source). All MEG data were examined for age-related changes in neural oscillatory activity using a whole-brain beamforming approach. Our primary findings indicated robust behavioral differences in task performance based on the type of interference, as well as stronger beta oscillations with increasing age in the right dorsolateral prefrontal cortices (flanker and multi-source conditions), left parietal (flanker and Simon), and medial parietal regions (multi-source). Overall, these data indicate that healthy aging is associated with alterations in higher-order association cortices that are critical for attention and motor control in the context of cognitive interference.


Healthy Aging , Humans , Brain , Magnetoencephalography , Cerebral Cortex , Cognition
8.
Aging (Albany NY) ; 15(24): 14574-14590, 2023 Dec 27.
Article En | MEDLINE | ID: mdl-38154102

Working memory (WM) is a foundational cognitive function involving the temporary storage of information. Unfortunately, WM is also one of the most sensitive cognitive functions to the detrimental effects of aging. Expanding the field's understanding of age-related WM changes is critical to advancing the development of strategies to mitigate age-related WM declines. In the current study, we investigated the neural mechanisms serving WM function in seventy-eight healthy aging adults (range: 20.2-65.2 years) using magnetoencephalography (MEG) and a Sternberg WM task with letter stimuli. Neural activity during the different phases of the WM task (i.e., encoding, maintenance, and retrieval) were imaged using a time-frequency resolved beamformer and whole-brain statistics were performed. We found stronger increases in theta activity and stronger decreases in alpha and beta activity (i.e., more negative relative to baseline) as a function of healthy aging. Specifically, age-related increases in theta activity were detected during the encoding period in the primary visual and left prefrontal cortices. Additionally, alpha and beta oscillations were stronger (i.e., more negative) during both encoding and maintenance in the left prefrontal cortex in older individuals. Finally, alpha and beta oscillations during the retrieval phase were stronger (i.e., more negative) in older participants within the prefrontal, parietal, and temporal cortices. Together, these results indicate that healthy aging strongly modulates the neural oscillatory dynamics serving WM function.


Brain , Memory, Short-Term , Humans , Aged , Magnetoencephalography/methods , Brain Mapping/methods , Prefrontal Cortex
9.
Hum Brain Mapp ; 44(18): 6511-6522, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37955378

Cannabis is the most widely used recreational drug in the United States and regular use has been linked to deficits in attention and memory. However, the effects of regular use on motor control are less understood, with some studies showing deficits and others indicating normal performance. Eighteen users and 23 nonusers performed a motor sequencing task during high-density magnetoencephalography (MEG). The MEG data was transformed into the time-frequency domain and beta responses (16-24 Hz) during motor planning and execution phases were imaged separately using a beamformer approach. Whole-brain maps were examined for group (cannabis user/nonuser) and time window (planning/execution) effects. As expected, there were no group differences in task performance (e.g., reaction time, accuracy, etc.). Regular cannabis users exhibited stronger beta oscillations in the contralateral primary motor cortex compared to nonusers during the execution phase of the motor sequences, but not during the motor planning phase. Similar group-by-time window interactions were observed in the left superior parietal, right inferior frontal cortices, right posterior insular cortex, and the bilateral motor cortex. We observed differences in the neural dynamics serving motor control in regular cannabis users compared to nonusers, suggesting regular users may employ compensatory processing in both primary motor and higher-order motor cortices to maintain adequate task performance. Future studies will need to examine more complex motor control tasks to ascertain whether this putative compensatory activity eventually becomes exhausted and behavioral differences emerge.


Cannabis , Motor Cortex , Humans , Brain/diagnostic imaging , Magnetoencephalography/methods , Brain Mapping , Motor Cortex/diagnostic imaging , Motor Cortex/physiology
10.
Hum Brain Mapp ; 44(17): 6043-6054, 2023 12 01.
Article En | MEDLINE | ID: mdl-37811842

The transition from childhood to adolescence is associated with an influx of sex hormones, which not only facilitates physical and behavioral changes, but also dramatic changes in neural circuitry. While previous work has shown that pubertal hormones modulate structural and functional brain development, few of these studies have focused on the impact that such hormones have on spontaneous cortical activity, and whether these effects are modulated by sex during this critical developmental window. Herein, we examined the effect of endogenous testosterone on spontaneous cortical activity in 71 typically-developing youth (ages 10-17 years; 32 male). Participants completed a resting-state magnetoencephalographic (MEG) recording, structural MRI, and provided a saliva sample for hormone analysis. MEG data were source-reconstructed and the power within five canonical frequency bands (delta, theta, alpha, beta, and gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially specific effects of testosterone and sex by testosterone interactions, while covarying out age. We found robust sex differences in the modulatory effects of testosterone on spontaneous delta, beta, and gamma activity. These interactions were largely confined to frontal cortices and exhibited a stark switch in the directionality of the correlation from the low (delta) to high frequencies (beta/gamma). For example, in the delta band, greater testosterone related to lower relative power in prefrontal cortices in boys, while the reverse pattern was found for girls. These data suggest testosterone levels are uniquely related to the development of spontaneous cortical dynamics during adolescence, and such levels are associated with different developmental patterns in males and females within regions implicated in executive functioning.


Magnetoencephalography , Testosterone , Adolescent , Humans , Male , Female , Child , Testosterone/pharmacology , Magnetic Resonance Imaging , Frontal Lobe , Prefrontal Cortex/diagnostic imaging , Brain
11.
Hum Brain Mapp ; 44(18): 6388-6398, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37853842

INTRODUCTION: The anterior pituitary gland (PG) is a potential locus of hypothalamic-pituitary-adrenal (HPA) axis responsivity to early life stress, with documented associations between dehydroepiandrosterone (DHEA) levels and anterior PG volumes. In adults, elevated anxiety/depressive symptoms are related to diminished DHEA levels, and studies have shown a positive relationship between DHEA and anterior pituitary volumes. However, specific links between responses to stress, DHEA levels, and anterior pituitary volume have not been established in developmental samples. METHODS: High-resolution T1-weighted MRI scans were collected from 137 healthy youth (9-17 years; Mage = 12.99 (SD = 1.87); 49% female; 85% White, 4% Indigenous, 1% Asian, 4% Black, 4% multiracial, 2% not reported). The anterior and posterior PGs were manually traced by trained raters. We examined the mediating effects of salivary DHEA on trauma-related symptoms (i.e., anxiety, depression, and posttraumatic) and PG volumes as well as an alternative model examining mediating effects of PG volume on DHEA and trauma-related symptoms. RESULTS: DHEA mediated the association between anxiety symptoms and anterior PG volume. Specifically, higher anxiety symptoms related to lower DHEA levels, which in turn were related to smaller anterior PG. CONCLUSIONS: These results shed light on the neurobiological sequelae of elevated anxiety in youth and are consistent with adult findings showing suppressed levels of DHEA in those with greater comorbid anxiety and depression. Specifically, adolescents with greater subclinical anxiety may exhibit diminished levels of DHEA during the pubertal window, which may be associated with disruptions in anterior PG growth.


Dehydroepiandrosterone , Hydrocortisone , Adult , Humans , Adolescent , Child , Female , Male , Hypothalamo-Hypophyseal System , Anxiety/diagnostic imaging , Pituitary-Adrenal System
12.
Neuroimage ; 280: 120351, 2023 10 15.
Article En | MEDLINE | ID: mdl-37659656

The presence of conflicting stimuli adversely affects behavioral outcomes, which could either be at the level of stimulus (Flanker), response (Simon), or both (Multisource). Briefly, flanker interference involves conflicting stimuli requiring selective attention, Simon interference is caused by an incongruity between the spatial location of the task-relevant stimulus and prepotent motor mapping, and multisource is combination of both. Irrespective of the variant, interference resolution necessitates cognitive control to filter irrelevant information and allocate neural resources to task-related goals. Though previously studied in healthy young adults, the direct quantification of changes in oscillatory activity serving such cognitive control and associated inter-regional interactions in healthy aging are poorly understood. Herein, we used an adapted version of the multisource interference task and magnetoencephalography to investigate age-related alterations in the neural dynamics governing both divergent and convergent cognitive interference in 78 healthy participants (age range: 20-66 years). We identified weaker alpha connectivity between bilateral visual and right dorsolateral prefrontal cortices (DLPFC) and left dorsomedial prefrontal cortices (dmPFC), as well as weaker gamma connectivity between bilateral occipital regions and the right dmPFC during flanker interference with advancing age. Further, an age-related decrease in gamma power was observed in the left cerebellum and parietal region for Simon and differential interference effects (i.e., flanker-Simon), respectively. Moreover, the superadditivity model showed decreased gamma power in the right temporoparietal junction (TPJ) with increasing age. Overall, our findings suggest age-related declines in the engagement of top-down attentional control secondary to reduced alpha and gamma coupling between prefrontal and occipital cortices.


Cerebellum , Dorsolateral Prefrontal Cortex , Young Adult , Humans , Adult , Middle Aged , Aged , Gamma Rays , Head , Cognition
13.
Dev Cogn Neurosci ; 63: 101288, 2023 Oct.
Article En | MEDLINE | ID: mdl-37567094

The neural and cognitive processes underlying the flexible allocation of attention undergo a protracted developmental course with changes occurring throughout adolescence. Despite documented age-related improvements in attentional reorienting throughout childhood and adolescence, the neural correlates underlying such changes in reorienting remain unclear. Herein, we used magnetoencephalography (MEG) to examine neural dynamics during a Posner attention-reorienting task in 80 healthy youth (6-14 years old). The MEG data were examined in the time-frequency domain and significant oscillatory responses were imaged in anatomical space. During the reorienting of attention, youth recruited a distributed network of regions in the fronto-parietal network, along with higher-order visual regions within the theta (3-7 Hz) and alpha-beta (10-24 Hz) spectral windows. Beyond the expected developmental improvements in behavioral performance, we found stronger theta oscillatory activity as a function of age across a network of prefrontal brain regions irrespective of condition, as well as more limited age- and validity-related effects for alpha-beta responses. Distinct brain-behavior associations between theta oscillations and attention-related symptomology were also uncovered across a network of brain regions. Taken together, these data are the first to demonstrate developmental effects in the spectrally-specific neural oscillations serving the flexible allocation of attention.


Brain , Magnetoencephalography , Humans , Child , Adolescent , Brain/physiology , Magnetoencephalography/methods , Attention/physiology , Brain Mapping/methods
14.
Cereb Cortex ; 33(14): 9175-9185, 2023 07 05.
Article En | MEDLINE | ID: mdl-37279931

Assessing brain connectivity during rest has become a widely used approach to identify changes in functional brain organization during development. Generally, previous works have demonstrated that brain activity shifts from more local to more distributed processing from childhood into adolescence. However, the majority of those works have been based on functional magnetic resonance imaging measures, whereas multispectral functional connectivity, as measured using magnetoencephalography (MEG), has been far less characterized. In our study, we examined spontaneous cortical activity during eyes-closed rest using MEG in 101 typically developing youth (9-15 years old; 51 females, 50 males). Multispectral MEG images were computed, and connectivity was estimated in the canonical delta, theta, alpha, beta, and gamma bands using the imaginary part of the phase coherence, which was computed between 200 brain regions defined by the Schaefer cortical atlas. Delta and alpha connectivity matrices formed more communities as a function of increasing age. Connectivity weights predominantly decreased with age in both frequency bands; delta-band differences largely implicated limbic cortical regions and alpha band differences in attention and cognitive networks. These results are consistent with previous work, indicating the functional organization of the brain becomes more segregated across development, and highlight spectral specificity across different canonical networks.


Brain , Magnetoencephalography , Male , Female , Adolescent , Humans , Child , Brain/diagnostic imaging , Magnetoencephalography/methods , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Limbic Lobe , Rest , Neural Pathways/diagnostic imaging
15.
Brain Commun ; 5(3): fcad131, 2023.
Article En | MEDLINE | ID: mdl-37151223

Selective attention is an important component of cognitive control and is essential for day-to-day functioning. The Simon task is a common test of visual selective attention that has been widely used to probe response selection, inhibition and cognitive control. However, to date, there is a dearth of literature that has focused on the oscillatory dynamics serving task performance in the selective attention component of this task. In this study, 32 healthy adults (mean age: 33.09 years, SD: 7.27 years) successfully completed a modified version of the Simon task during magnetoencephalography. All magnetoencephalographic data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and peak task-related neural activity was extracted to examine the temporal dynamics. Across both congruent and Simon conditions, our results indicated robust decreases in alpha (8-12 Hz) activity in the bilateral occipital regions and cuneus during task performance, while increases in theta (3-6 Hz) oscillatory activity were detected in regions of the dorsal frontoparietal attention network, including the dorsolateral prefrontal cortex, frontal eye fields and insula. Lastly, whole-brain condition-wise analyses showed Simon interference effects in the theta range in the superior parietal region and the alpha range in the posterior cingulate and inferior frontal cortices. These findings provide network-specific insights into the oscillatory dynamics serving visual selective attention.

16.
Neuroimage ; 271: 120020, 2023 05 01.
Article En | MEDLINE | ID: mdl-36914104

For decades, visual entrainment paradigms have been widely used to investigate basic visual processing in healthy individuals and those with neurological disorders. While healthy aging is known to be associated with alterations in visual processing, whether this extends to visual entrainment responses and the precise cortical regions involved is not fully understood. Such knowledge is imperative given the recent surge in interest surrounding the use of flicker stimulation and entrainment in the context of identifying and treating Alzheimer's disease (AD). In the current study, we examined visual entrainment in eighty healthy aging adults using magnetoencephalography (MEG) and a 15 Hz entrainment paradigm, while controlling for age-related cortical thinning. MEG data were imaged using a time-frequency resolved beamformer and peak voxel time series were extracted to quantify the oscillatory dynamics underlying the processing of the visual flicker stimuli. We found that, as age increased, the mean amplitude of entrainment responses decreased and the latency of these responses increased. However, there was no effect of age on the trial-to-trial consistency in phase (i.e., inter-trial phase locking) nor amplitude (i.e., coefficient of variation) of these visual responses. Importantly, we discovered that the relationship between age and response amplitude was fully mediated by the latency of visual processing. These results indicate that aging is associated with robust changes in the latency and amplitude of visual entrainment responses within regions surrounding the calcarine fissure, which should be considered in studies examining neurological disorders such as AD and other conditions associated with increased age.


Healthy Aging , Adult , Humans , Visual Perception/physiology , Magnetoencephalography/methods , Occipital Lobe/physiology , Photic Stimulation/methods
17.
Psychopharmacology (Berl) ; 240(4): 769-783, 2023 Apr.
Article En | MEDLINE | ID: mdl-36752815

RATIONALE AND OBJECTIVES: Cannabis use is often associated with the use of other psychoactive substances, which is subsequently linked to an increased risk for addiction. While there is a growing body of neuroimaging literature investigating the cognitive effect of long-term cannabis use, very little is known about the potential additive effects of cannabis polysubstance use. METHODS: Fifty-six adults composed of 18 polysubstance users (i.e., cannabis plus at least one other illicit substance), 19 cannabis-only users, and 19 nonusers completed a visuospatial attention task while undergoing magnetoencephalography. A data-driven approach was used to identify oscillatory neural responses, which were imaged using a beamforming approach. The resulting cortical regions were probed for group differences and used as seeds for whole-brain connectivity analysis. RESULTS: Participants exhibited robust theta, alpha, beta, and gamma responses during visuospatial processing. Statistical analyses indicated that the cannabis-only group had weaker occipital theta relative to the nonusers, and that both polysubstance and cannabis-only users had reduced spontaneous gamma in the occipital cortices during the pre-stimulus baseline period relative to nonusers. Finally, functional connectivity analyses revealed that polysubstance users had sharply reduced beta connectivity between occipital and prefrontal, as well as occipital and left temporal cortices. CONCLUSIONS: Cannabis use should be considered in a polysubstance context, as our correlational design suggests differences in functional connectivity among those who reported cannabis-only versus polysubstance use in occipital to prefrontal pathways critical to visuospatial processing and attention function. Future work should distinguish the effect of different polysubstance combinations and use more causal designs.


Cannabis , Adult , Humans , Cannabis/adverse effects , Brain/physiology , Magnetoencephalography , Neuroimaging , Attention/physiology
18.
Proc Natl Acad Sci U S A ; 120(4): e2212776120, 2023 01 24.
Article En | MEDLINE | ID: mdl-36652485

In the largest and most expansive lifespan magnetoencephalography (MEG) study to date (n = 434, 6 to 84 y), we provide critical data on the normative trajectory of resting-state spontaneous activity and its temporal dynamics. We perform cutting-edge analyses to examine age and sex effects on whole-brain, spatially-resolved relative and absolute power maps, and find significant age effects in all spectral bands in both types of maps. Specifically, lower frequencies showed a negative correlation with age, while higher frequencies positively correlated with age. These correlations were further probed with hierarchical regressions, which revealed significant nonlinear trajectories in key brain regions. Sex effects were found in absolute but not relative power maps, highlighting key differences between outcome indices that are generally used interchangeably. Our rigorous and innovative approach provides multispectral maps indicating the unique trajectory of spontaneous neural activity across the lifespan, and illuminates key methodological considerations with the widely used relative/absolute power maps of spontaneous cortical dynamics.


Brain , Magnetoencephalography , Brain Mapping , Longevity
19.
J Psychopharmacol ; 36(12): 1324-1337, 2022 12.
Article En | MEDLINE | ID: mdl-36416285

BACKGROUND: Cannabis use and HIV are independently associated with decrements in cognitive control. However, the combined effects of HIV and regular cannabis use on the brain circuitry serving higher-order cognition are unclear. AIMS: Investigate the interaction between cannabis and HIV on neural interference effects during the flanker task and spontaneous activity in regions underlying higher-order cognition. METHODS: The sample consisted of 100 participants, including people with HIV (PWH) who use cannabis, PWH who do not use cannabis, uninfected cannabis users, and uninfected nonusers. Participants underwent an interview regarding their substance use history and completed the Eriksen flanker task during magnetoencephalography (MEG). MEG data were imaged in the time-frequency domain and oscillatory maps depicting the neural flanker interference effect were probed for group differences. Voxel time series were then assessed for group-level differences in spontaneous activity. RESULTS: Group differences in behavioral performance were identified along with group differences in theta and alpha neural interference responses in higher-order regions across the cortex, with nonusers with HIV generally exhibiting the most aberrant responses. Likewise, time series analyses indicated that nonusers with HIV also had significantly elevated spontaneous alpha activity in the left inferior frontal and dorsolateral prefrontal cortices (dlPFC). Finally, we found that spontaneous and oscillatory alpha activity were significantly coupled in the inferior frontal cortex and dlPFC among cannabis users, but not nonusers. CONCLUSIONS: Regular cannabis use appears to suppress the impact of HIV on spontaneous and oscillatory alpha deficits in the left inferior frontal cortex and dlPFC.


Cannabis , HIV Infections , Hallucinogens , Humans , Cannabinoid Receptor Agonists , Analgesics , Cognition
20.
Res Child Adolesc Psychopathol ; 50(12): 1543-1555, 2022 12.
Article En | MEDLINE | ID: mdl-36048374

The Coronavirus Disease 2019 (COVID-19) pandemic has spread across the world and resulted in over 5 million deaths to date, as well as countless lockdowns, disruptions to daily life, and extended period of social distancing and isolation. The impacts on youth in particular are astounding, with shifts in learning platforms, limited social outlets, and prolonged uncertainty about the future. Surveys have shown that mental health among youth has severely suffered during the pandemic. However, limited research to date has reported on physiological indices of stress surrounding the pandemic, such as cortisol. Cortisol is a stress hormone that typically increases during stressful situations and can have deleterious effects on mental and physical health when chronically heightened. The present study leveraged hair cortisol concentration measurements, which allowed the retrospectiveinvestigation of circulating cortisol prior to- versus after pandemic-related local lockdowns during the first wave of the pandemic. A final sample of 44 youth ages 10- to 18-years-old provided hair samples and reported on their perceived affective well-being and level of concern regarding pandemic-related stressors between May and June of 2020. We found significant levels of concern and decreases in affective well-being following local lockdowns. Moreover, we saw that cortisol robustly increased following local lockdowns, and those increases were predictive of changes in affect. These findings provide critical insights into the underlying neuroendocrinology of stress during the pandemic and support the need for resources to support youths' mental health and well-being during this globally significant event.


COVID-19 , Pandemics , Adolescent , Humans , Child , Hydrocortisone , Communicable Disease Control , Hair
...